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Abstract 
The fact that genes associated with parts of cellular 
machinery can be collectively controlled means that it is 
theoretically possible to assign phenotypic function to certain 
genes by analysis of their expression profiles. However the 
multi-faceted nature of genetic function, and the complexities 
of the signal and noise interactions that are inherent in a cell, 
means that whilst illustrations of such mediated control (for 
example the repression of translational machinery) have been 
well studied it is difficult to use them to reliably ascertain 
genetic function for individual genes. In this paper the Gene 
Ontology is used to classify and then compare clusters from 
different sets of SAGE samples to discover which tags have 
a strong predisposition to reside in a particular type, or types, 
of cluster. This predisposition is then used to resolve 
ambiguities in tag assignment that have arisen by using 
sequence homology to predict protein products. 

Introduction 
A number of techniques have been proposed for the analysis 
of gene expression data sets (for reviews see [Sharan 2002, 
Szabo 2002, Pan 2001]). As has been suggested previously [Li 
2002, Gat-Viks 2003], it is the biological significance of the 
results that is important;  particularly where expression 
patterns can be related to identifiable biological phenomena, 
such as disease pathology [Getz 2000, Golub 1999]. As gene 
expression profiles will be influenced by a variety of signal 
factors (be it their response to transcription factors, 
environmental conditions, the level of RNA degradation, cell 
cycle variability, translational pauses or just their 
chromosome location) the desired underlying biological 
behaviour can be hard to differentiate from ‘noise’ (due to 
individual variability, multi-functional genes, differing 
experimental conditions, different levels of annotations and 
our lack of understanding). To enable understanding of an 
experiment, underlying patterns within the data need to be 
identified and then correctly mapped to known functional 
behaviour.  

To aid in such understanding, it is possible to assign 
putative functionality to clusters of genes based on their 
expression profiles; this is often done by measuring their 
‘functional category enrichment’ [Tavazoie 1999]. Such 
functional assignment can be performed by automatically 
correlating sets of genes with similar functionality (e.g. part 
of ribosomal machinery, cyclin activity) to statistically defined 
components which are elucidated by their expression profile. 
It is then possible to assign a series of putative functionalities 
to genes with unknown functionality depending on their level 
of involvement in these calculated components. Such a 

method depends on being able to generate components from 
a matrix of gene expression values which are able to define 
the correct granularity of functionality: too specific and 
group based functionality can not be assigned; too general 
and the functionality ranges will be too broad.  With the 
advent of the Gene Ontology [Gene Ontology Consortium 
2000], there exists a standard classification system for such 
genetic functionality. Work on the use of expression profiles 
to automatically generate GO annotations for unknown 
genes has generally focused on  supervised learning 
techniques  [Hvidsten 2002], and has mainly used gene chip 
time course experiments [Lagreid 2003, Hvidsten 2003]. 
Gene functionality assignment has also been undertaken 
using techniques based on proteomics data [Deng 2004] and 
literature mining [Perez 2004, Chiang 2003].  

Little work has been done on assignment of functionality 
to SAGE tags using their expression profiles. Unsurprisingly, 
the principle technique for determining the functionality of a 
tag is homology searching [Lash 2000]. However, due to the 
inherent error rate with ESTs and SAGE itself, there exists a 
large number of tags which do not have ‘reliable’ mappings, 
but either have ambiguities or there is no known assignment. 

In this paper the Gene Ontology is used to classify and 
then compare clusters from different sets of SAGE 
experiments to discover which tags have a strong 
predisposition to reside in a particular type, or types, of 
cluster.  This analysis allows for the possibility of deducing 
functionality of a SAGE tag based on its expression profile, 
as well as the ability to resolve ambiguities in homology-
based SAGE tag assignment. Using such ontology defined 
clusters has a number of advantages: 

Biological relevance. The ‘meta data’, rather then the 
tag identity, about the sets of genes is used to define the 
function of the cluster. This definition is determined using 
the GO defined function enrichment of the cluster, so that 
the comparison of clusters is assigned based on biological 
relevance. Therefore, the functional definition of the clusters 
attempts to represent a range of biological behaviours which 
describes the complexities of the interactions that occur 
within a cell. If the clustering method is able to distinguish 
between different genetic controls, then similar clusters will 
appear within the different samples. That is not to say that 
other types of information could not be used to describe the 
clusters (e.g. proteomics data, genome location), however the 
abstract nature of GO makes it suitable for such functional 
definitions. Ontology terms have been used previously to 
identify components within a system; such approaches have 
been used in supervised learning based analysis, either 
through ontology mapping [Midelfart 2001, Laegreid 2003] 
or disease classification [Dudoit 2002] 

Robustness. The complexities of analysing SAGE data 
have been well reported [Man 2000, Baggerly 2003]. The 
large number of tags and the incomplete assignments, 
coupled with the non-parametric distribution of the 
experimental results, undermines the successful use of this 
powerful exploratory technique. The use of functional 
definitions on the generated clusters provides a level of 
immunity from errors that arise due to both the absence of 
tags from certain experiments and incorrect annotations. 



Additionally, as the analysis uses a procedure of sampling 
from a number of collections of SAGE experiments, 
underlying biases that reside within the data can be identified 
separately to noise factors.  
The next section outlines the methods that were used to 
calculate the predisposing of tags to reside within different 
clusters. The results section gives the results from a 100 
SAGE experiment analysis, and shows how the technique 
can be used to predict function for SAGE tags.  

Methods 
To assign protein function to a SAGE tag, based on its 
expression profile, a methodology must be developed which 
demonstrates that the assignment has biological evidence and 
has a significant probability of being correct. The 
methodology adopted in this paper for such an analysis of 
the tags involves four steps: 
1)Subdivide a number of SAGE experiments into equal size 
samples (in this case 100 SAGE experiments were divided 
into 10 samples of equal size). The data items will then be 
pre-processed using both ranking and projection techniques. 
2)For each sample find clusters using appropriate techniques. 
Three techniques were used, these were based on finding 
clusters using Euclidian distances, Cosine distances and a 
Semi-discrete decomposition [O’Leary 1983].  
3)Assign functional enrichment scores to the clusters. The 
enrichment scores for the clusters were based upon the 
ontology terms of their members. 
4)Finding the tags that occur within similar clusters in a 
significant number of samples. This was done by scoring 
each tag by the frequency with which it exists within a cluster 
with a given functional enrichment in each of the ten 
samples. The significance of the result was determined by 
using both a model for the distribution of results (presuming 
no underlying bias within the data) and by using random 
samples. 
The following sections discuss in detail the techniques that 
were used in each of the steps. More details about the 
samples used can be found on the web site. 

Processing the data 
In this paper, both projection and ranking [Wilcoxon 

1945] were used to process the data before cluster analysis 
was performed. The use of such techniques has become 
increasingly popular in microarray analysis [Wall 2003, 
Troyanskaya 2002]. One of the more commonly used 
projection techniques to identify components in gene 
expression involves the identification of Principle 
components [Dysvik 2001, Sturn 2000, Raychaudhuri 2000].  
Singular-value decompositions (SVD) have been used to find 
Principle components, and have been applied extensively in 
expression analysis (for robust analysis [Liu 2003], cross 
species comparison [Alter 2003], as well as (genome based) 
principle component identification [Alter 2000]). Principle 
components are orthogonal vectors which represent the 
maximum amount of variance within the chosen data set. By 
projecting out the data using these vectors the similarity 
between the vectors and each of the genes can be readily 
identified.  In this paper, SVDs were used to project the data 

so that it was possible to find clusters of genes, with each 
group exhibiting a degree of variance with the others.  

The effects of the ranking and projection techniques 
were exhaustively explored, so that for each sample four 
different levels of pre-processing were performed: 1) no pre-
processing used; 2) the data underwent a global ranking 
procedure; 3) the data was projected using SVDs; and 4) the 
data was ranked and then projected. 

Cluster Discovery 
A number of different filtering and distance 

functions have been suggested for comparing SAGE data 
[Ng 2001]. In this paper two distance functions (Euclidian 
distance and Cosine distance) are used to explore the 
phenotype predictive power of gene expression profiles. 
Additionally the Semi-Discrete matrix decomposition 
method is used to identify sub parts of the gene expression 
profiles which contribute towards areas which have values 
above or below threshold values (areas of high density or 
‘bumps’). The clustering techniques that are described are 
customised to deal with the issues of outliers and non-normal 
distributions that arise when analysing SAGE data. These 
three different clustering techniques are discussed below: 
Euclidian Distance. The K-Means algorithm was altered to 
make it suitable for working with the sparseness of SAGE 
data. A large number of initial centroids were chosen by 
randomly selecting data points within the data set, in a 
manner similar to that suggested by [Forgy 1965]. By using 
the data points themselves as the initial centroids (rather than 
the points with the furthest distance) a large number of 
clusters were generated for the lower expression levels. If 
during an iteration cycle a cluster had less than a minimum 
threshold of members it was removed. Such a removal of 
clusters causes a larger decrease in the number of clusters 
within areas where there is little variation or sparsely 
populated areas, reflecting the distribution of data points 
within a typical SAGE experiment. Additionally an anchoring 
procedure was introduced, so that the resulting centroids 
within a sample were adjusted at each iteration to match 
those of a ‘real value’. Such an anchoring technique is used to 
minimise the effect of outliers. The use of a Euclidian 
distance function attempts to identify clusters of genes which 
are not only regulated in a similar manner, but are also 
expressed to approximately the same extent within the 
different experiments.   
Cosine Distance. To identify groups that exhibit co-
expression a cosine similarity test was implemented. This 
measures the difference in the angles between the expression 
profiles rather than the Euclidian distance. Genes are 
grouped by iteratively calculating and fitting the centroids, 
with the distance model being the cosine between the 
vectors, that is to say: baba ∗•= )()cos(α . 
Convergence is reached when the size and shape of the 
components within the system remains unaltered. As with 
the Euclidian distance measure, values were seeded from a 
set of real vales, and during iterations the resulting model was 
altered to be the same as the nearest matching result. Such an 
approach attempts to find genes that whilst they may not be 



expressed in the same amount, they are regulated in a similar 
manner. 

Semi-Discrete Decomposition 
SDD was originally developed for image compression. SDD 
attempts to identify the most significant ‘bump’ (area of local 
density) in a matrix, and then calculates which items are 
affected by it. It then removes the bumps from the matrix 
and attempts to find the set of next most significant bumps. 
This process is continued until a pre-defined number of 
bumps have been found, and the items which contribute 
towards them have been assigned. An SDD iteration 
involves: 
 
 Find the nth cluster 
 Construct a matrix (A’) which represents the previous 

cluster by taking the product of X[n-1]*D[n-1]*Y[n-1]. 
This matrix represents the previous concepts 
contribution to the local densities in the matrix. 

 Subtract A’ from A, giving a matrix (B) with the density 
approximations removed. 

 Find the next set of densities, and approximate the local 
max/min 

 
In a similar manner to SVDs, the semi discrete 
decomposition will decompose a matrix into three separate 
matrices (e.g. a rotation, a scale and a rotation).  
e.g. Anm=XnrDrYrm’ (where A is the original matrix.). The 
entries in X and Y are limited to members of the vector {1, 
0,-1} (see Figure 1) 
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Figure 1: The decomposition has been used to identify three factors. 
Examination of the X matrix shows how the different genes are involved in the 
‘bumps’ that occur within the matrix. The first factor (column) is contributed 
towards by the first and second genes (rows) of A, the D matrix shows the first 
factor has a significance (height) of 5, and the Y matrix shows that the first 
and second experiment are significant in contributing towards the factor. The 
second factor (which has a significance of 3) is contributed towards by genes 2 
and 3, although they contribute orthogonally. The final factor is made up of 
genes 2 and 3, and they both contribute in the same manner. 
 
SDD finds a range of areas within the matrix and 
approximates the average of these values into one factor, 
thereby combining a range of complex factors into one 
concept. Therefore, SDD will find small clusters which 
represent genes which contribute towards ‘bumps’ within the 
expression data. Whilst the other clustering methods used in 
this analysis clusters find similarities in the whole of the 
expression pattern. SDD is useful in finding small clusters of 
genes that exhibit similar behaviour within subsets of 
expression data.  SDD has been shown to work with high 
dimensional non-normal data; in particular involving sparsely 
populated data sets with discrete values (thus, is suitable for 
SAGE data). 
 

Local Density. An alternative to using overall distance 
between the different expression profiles is to compare local 
sub-spaces within the data.  In this paper the use of a semi-
discrete decomposition (SDD) is proposed, which 
approximates the contribution that genes make to local 
densities within the gene/expression matrix. As the derived 
decomposition approximates the areas of local density that 
occur within a matrix, the resulting calculation is less effected 
by outliers and extreme values which are typically found 
within a matrix of gene expression values. More information 
is available in the Semi-Discrete Decomposition Box. 

Calculating the Functional Enrichment 
Where possible each tag is mapped to an associated 

set of ontology terms. In the SAGE data sets this is done 
using the NCBI SAGE to Unigene Unigene to Locuslink, 
and then the GOA Locuslink to GO mappings (the 
mappings were current as of March 2004). Where multiple 
mappings are provided no preference is given. The exception 
to this is the SAGE mappings, where the most probable 
mapping (or the two best mappings) is used to obtain the 
Unigene annotations. 
Each gene is associated with its set of ontology terms and 
their ancestors; this is done by following the ISA relationship 
only (see Figure 2). Such a use of the relationships in the 
Gene Ontology allows for a richer definition of clusters. For 
example a cluster which contains a high proportion of 
histone proteins, which have been identified by their 
expression profiles due to their involvement in transcription, 
would be described as being involved in a number of related 
biological processes (chromatin assembly/disassembly, 
chromosome organisation) and having a number of 
molecular functions (DNA binding, nucleic acid binding) and 
being located in particular cellular components (nucleus). In 
this paper each ontology term that describes a cluster is 
referred to as one of the clusters facets. The multiple facets of 
a cluster enables the description of the contained genes in 
their entirety, unfortunately this also means that only a subset 
of each of the facets will accurately describe an individual 
Tag within a cluster. This means that whilst a complete 
description of a cluster is a useful tool, it does introduce 
erroneous results when using such descriptions as an 
indicator of individual tag’s protein function. 

Using the ontology terms that are associated with 
each cluster the functional enrichment can be modelled as a 
binomial distribution, with the probability of x genes marked 
up with a specific ontology term occurring (with 
replacement) in a sample of size n being: 

( )( ) ( ) xnx ppxnxn −−∗−∗ 1)!(!!  , where p is the probability 
of a given gene having a specific ontology term. For each 
refined cluster the ontology terms that have been mapped to 
the member genes are examined to see if the probability of 
this event occurring without bias is less than 0.01, if so then 
the cluster is marker as being significant. Due to the size of the 
data sets a binomial, rather than hypergeometric, probability 
is used.  

 



Terms No of Genes Genes 
Term 1 4 1,2,5,6 
Term 2 3 1,2,5 
Term 3 2 1,8 
Term 4 2 1,2 
Term 5 2 3,4 
Term 6 1 1 

 

Figure 2: The relationships within the ontology are explored to give a fuller 
description of each SAGE tag. For every ontology term associated with a tag 
all the parent terms (found by following the ISA relationship) are also 
associated.  

The significance of the results. 
When matching the number of times a particular tag 

appears within a cluster with a particular functional 
enrichment in each of the 10 sets of SAGE experiments, a 
reference as to what constitutes a significant trend needs to 
be determined. In the experiments such a reference is 
determined by the construction of a probability model which 
can be used to determine relevance cut off level for the 
results that were obtained. The number and size of the 
clusters has a direct effect on the number of facets that 
cluster will have and therefore the number of matches that 
are observed between the different samples. It is thus 
possible to build a probability model using information about 
the number of terms used to describe each tag, and the 
number of tags that reside within clusters. This information 
can be used to determine the probability of an event 
occurring presuming that there is no underlying bias. For 
example, if {P1,P2,P3} are the probabilities of tags with 
specific ontology terms occurring in 3 samples, then the 
probability of the tag occurring in only one of the three 
sample can be modelled as: 

). ( ) ( )( ) ( ) ( )( ) ( ) (( ) 321113121131211 Ρ∗Ρ−∗Ρ−+Ρ−∗Ρ∗Ρ−+Ρ−∗Ρ−∗Ρ

The above probability model assumes that there are no other 
significant underlying biases that exist within the data. Such 
an assumption is a fallacy, as the regulation of gene 
expression is only one of a number of factors which affects 
the results of such predictions. As ontology annotations are 

used to describe each cluster, one of significant issues is the 
bias that can be observed with these annotations. The 
ontology defined facets of a cluster are influenced by: 
The uneven distribution of annotation on the SAGE 
Tags. Terms are used by annotators to a lesser and greater 
degree which results in a bias in the ratios of terms used 
(families of genes that are better studied have more frequent 
and uniform annotations). The use of automatic annotation 
systems means that those genes for which there exists a body 
of literature will have significantly more detailed (and 
possible inaccurate) annotations. 
The lack of known function for the majority of tags. 
Additionally a large number of Tags have more than  one 
putative function which, by their nature, will contain 
anomalies. 
GO is not a model of gene expression. As the GO 
relationships represent a formal understanding of certain 
processes, rather than reflecting the underlying cell 
behaviour, the match between sets of GO terms and clusters 
can (at best) be thought of as an approximation (or 
decomposition), rather than a proper description, of the 
behaviour that the different expression profiles represent. 
 

To study the effects of the annotations bias on each 
analysis a random sample was simultaneously used for 
comparison. The randomisation procedure was designed so 
that only tags with known gene ontology terms were 
randomly exchanged. The results were clusters of the same 
size, and with the same proportion of genes with assigned 
ontology terms, but with different (random) functional 
enrichment. 

The bias for certain ontology terms is not always based 
on uneven distributions of annotations, that is to say certain 
ontology terms describe functionality which is more readily 
distinguishable by examination of expression profiles than 
others (e.g. terms describe translation machinery). This bias 
for certain ontology terms to define functional enrichment is 
known [Gat-Viks 2003], although the exact bias will change 
depending on the types of experiment. To identify the terms 
which best describe the members of a cluster 50 SAGE 
experiments were analysed (see web site for experiment 
details). Each cluster was analysed to examine the 
significance of its ‘functional enrichment’ ontology terms. 
This was done by sequentially removing tags from the cluster 
and comparing the real phenotypic functionality against the 
clusters predicted functionality. 
The tags were analysed sequentially in each cluster. This was 
done by calculating the functional enrichment for that cluster 
without the specific tag. The generated enrichment for the 
cluster was then compared against the specific tag, if the tag 
contained an ontology term that had been recognised as 
significant for the cluster then this was scored (see Table 1 
for subset of results). When comparing the tag with the 
cluster no ontology navigation was performed, the 
comparison was for the exact ontology term. If the ontology 
graph is navigated the number of significant terms increases, 
however there is a corresponding loss of specificity. The 
resulting data shows the significance of different ontology 
terms in describing the genes within specific clusters. 

Term 4 
Gene 1 
Gene 2 

Term 5 
Gene 3 
Gene 4 

Term 2 
Gene 5 

 

Term 6 
Gene 1 

Term 3 
Gene 6 
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Term Freq Pre 
nucleus 5957 0.294
integral to membrane 2380 0.230
regulation of transcription, DNA- 2376 0.193
DNA binding 2214 0.210
signal transduction 1442 0.209
RNA binding 1363 0.163
ATP binding 1198 0.133
hydrolase activity 1179 0.188
transferase activity 968 0.159
protein binding 951 0.165
cytoplasm 930 0.112
integral to plasma membrane 928 0.110
metabolism 811 0.495
transport 729 0.188
intracellular 679 0.123

Table 1: All the tags within each data set were analysed to see how closely they fitted the cluster in 
which they resided. The frequency column shows the number of times the ontology term was used to 
match between a cluster and a tag and the precision shows the average precision with the clusters 
(with regard to this term). 

Implementation 
The analyses carried out in this paper were performed 

using SeqExpress 1.1.7 and the SeqExpress SDK, which is 
available at http://www.seqexpress.com. SeqExpress is a 
desktop analysis and visualisation tool for gene expression 
experiments [Boyle 2004]. 

Results 
The results are presented in three parts: 

 The first section shows the predisposition of tags to 
appear in clusters which have a certain facet. 

 The second section shows the precision of the 
different techniques. 

 The third section shows how the technique can be 
used to resolve ambiguities in SAGE tag assignment. 

Predisposition of Tags 
Euclidian distance, cosine distance and SDD 

clustering were performed on all 10 sets of SAGE 
experiments (see Figures 3, 4, 5). The functional enrichment 
for each cluster was analysed, and then the results across all 
the sets were compared to see the number of times a specific 
facet (ontology term) of a cluster was used to describe a 
specific tag. These results show the frequency with which 
facets were used to describe tags, and do not indicate 
whether the particular facet is true for the tags it is 
describing. However, the results do show that there is a 
significant trend towards tags residing in clusters with the 
same facets.  

Figure 3 shows the results for the Euclidian distance 
clustering technique. As can be seen the probability model 
predicts that the number of facets which describe the same 
tag in 6 or more sets of experiments is approximately zero. 
More interestingly the samples which randomise ‘like with 
like’ have a minimum of an order of magnitutde lower 
number of facets which correctly describe tags in 6-10 of the 
samples.  The use of a Ranking procedure has a profound 
effect on the results; as such a ranking changes the 
distribution within the data set.  
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Figure 3: The Euclidian distance function was used to calculate clusters in 10 
different sets of experiments. Each tag was then analysed to see the number of 
times it appears in a cluster with the same functional enrichment. The log plot 
on the y-axis shows the number of times a facet of a cluster described the same 
tag. The three distinct groups of lines show the difference between the predicted 
results (show as a dashed line), the semi-random results (rendered in grey) and 
the actual results (rendered in black). The highest actual results are those 
relating to the samples that were pre-processed using a global ranking, and those 
that were pre-processed with a global ranking and the projected using their 
Principle components. 
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Figure 4: The Cosine distance function was used to calculate clusters in 10 
different sets of experiments. Each tag was then analysed to see the number of 
times it appears in a cluster with the same functional enrichment. The highest 
actual results are those relating to the samples that were pre-processed using a 
global ranking, and those that were pre-processed with a global ranking and the 
projected using their Principle components. The Cosine distance function results 
are similar to those of the Euclidian distance clustering. 

http://www.seqexpress.com/
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Figure 5: The SDD was used to calculate clusters in 10 different sets of 
experiments. Each tag was then analysed to see the number of times it appears 
in a cluster with the same functional enrichment. The highest actual results are 
those relating to the samples that were pre-processed using a global ranking, and 
those that were pre-processed with a global ranking and the projected using their 
Principle components. The black lines are the actual results labelled with the 
pre-processing technique that was used (broken lines are the predicted results, 
grayed lines are the randomised results) 
 

The cosine distance results were similar in both 
proportion and population to the Euclidian distance results 
(see Figure 4). As with the Euclidian distance results the pre-
processing of the data by Ranking, and to a lesser extent 
Projection, had a direct effect on the frequency with which 
facets described individual tags.  

The SDD defined clusters had a different 
distribution of results than the distance clustering methods 
(see Figure 5). The number of significant tags (with the cut 
off for significance being set to matches in 6 or more sets of 
SAGE experiments) is approximately the same. As with the 
other methods ranking affects the results as it alters the 
distance between the points in the gene/expression matrix to 
better reflect the underlying differences. 

The two methods that are able to generate the 
largest numbers of different significant tags are the Euclidian 
distance measure on the ranked and the (SVD) projected data 
set, and the SDD on the ranked data.  

It is interesting to note that the SDD is commonly 
used as an alternative to SVD in latent semantic indexing 
(LSI) [Deerwester 1990] based information retrieval. In effect 
the Euclidian distance clustering of the projected data is 
finding multi-functional ‘concepts’ [Kolda 1999] in a manner 
indicative of LSI. Whilst both methods are known to exhibit 
similar behaviour in data sets that have large numbers of 
areas of high density (‘bumps’) [McConnell 2001], the items 
and relationships they discover are known to differ. 

For all the cluster identification methods the initial 
cluster size (or the number of factors used) has a direct effect 
on the number of clusters that are found. In general, the 
higher the number of initial clusters the smaller the average 
cluster size. However, as smaller clusters will have less facets, 
the higher the initial cluster count the more precise a 
description of the tags contained within a cluster will be 
gained. 

Precision of the clusters 
As the purpose of this work was to be able to assign 

function to tags for which sequence homology was unable to 
reliably determine a mapping, an indication as to how well 
the facets of the cluster represented their constituent tags 
was needed. The precision measure needed to be two fold: 
tag precision is the proportion of the tags that match one or 
more of the facets in its cluster; and facet precision is a 
measure of how well the facets describe the tags. The facet 
precision will always be equal or less than the tag precision, 
as it is the proportion of facets which are “true” averaged 
over all the tags in the cluster, that is to say: (∑

t

ff
1

' ) , where f’ 

is the number of times the specific facet is actually one of the 
tags ontology terms, f is the number of facets for the cluster 
and t is the number of tags in the cluster.  

The results in Figures 7 and 8 show both the tag 
precision and the facet precision. As can be seen in Figure 7, 
when the data is rank-transformed and then projected (and 
then analysed using the Euclidian distance clustering 
technique) there is a steady decline in the number of matched 
tags, although the precision measures goes up. Generally the 
higher the starting cluster size that is used (and therefore the 
size of resulting clusters is smaller and the precision of the 
prediction results is better) the more general the ontology 
term(s) that are found for the facets, as the ability to find 
functional enrichment is dependent on the clusters having 
unusual concentrations of terms. This means that whilst we 
can get high precision values, their usefulness may be limited 
if they are only available for a few tags and their granularity is 
such that it is difficult to differentiate between tags (e.g. only 
able to differentiate between tags that are involved in a 
‘physiological process’ and those that are not). 

Ranked PCA Eucledian Distance Results

Number of Inital Clusters

N
um

be
r o

f S
ig

ni
fic

an
t T

ag
s

0
20

00
40

00
60

00
80

00

500 2000 4000 10000

 
Figure 7: Showing the number of tags which occur in clusters with the same 
functional enrichment in 6 or more samples. Anchored Euclidian distance 
clusters were found by seeding the algorithm with a varying number of initial 
clusters (shown on the x-axis). If a Tag was found to be in 6 or more clusters 
which exhibit the same type of functional enrichment, it was scored as 
significant. The number of tags which were found to be significant is shown by 
the height of each of the histograms. The grayed portion of the histograms shows 
the proportion of Tags which had a GO ontology term which matched the 
functional enriched clusters in which they were found (the ‘tag precision’ of the 
technique). The two horizontal lines along each bar give a measure of the 
proportion of facets which are correct (the ‘facet precision’), the solid line is the 
proportion for results that were Ranked and then projected using their Principle 
components, the dashed line is for the results that were only Ranked. 
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Figure 8: Showing the number of tags which occur in clusters with the same 
functional enrichment in 6 or more samples. The clusters were generated using 
SDD, the x-axis shows the number of factors that were determined. The 
number of tags which were found to be significant is shown by the height of each 
of the histograms. The grayed portion of the histograms shows the proportion of 
Tags which has a GO ontology term which matched the functional enriched 
clusters in which they were found (the ‘tag precision’. The horizontal lines along 
each bar give a measure of the proportion of facets which are correctly described 
the tags in its cluster (the facet precision). 

Resolving Ambiguities. 
For tags which have more than one ‘reliable’ protein 

function, this technique could be used to indicate which of 
the possibilities is exhibited by the tag’s expression profile. In 
this case, the SAGE tags which had more than one ‘reliable’ 
mapping to Unigene clusters (using Locuslink ids) were 
examined to see if they had a predisposition to (re)occur in 
clusters which had a particular facet. Only one facet for each 
cluster was compared (this was the facet which had the 
lowest probability of occurring due to chance assuming a 
binomial distribution). In the cases where this facet could not 
distinguish between the possible phenotypes for the facet (as 
the facet described all of the possibilities), the next highest 
scoring facet was used. 

For the SDD analysis the number of factors was set to 8, 
and for the Euclidian distance clustering algorithm the 
number of seeded clusters was set to 2000. These starting 
parameters would enable the categorisation of a large number 
of tags, with a reasonable level of precision (as the homology 
searches already provide a good ‘hint’ as to the functionality). 
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Figure 10: If a phenotype for a tag  is favoured above the other possible 

choices in 6 or more of the samples then it is marked as being significant. By 
using such a cut off, the SDD clustering finds and resolved 1,600 tag 
ambiguities. The gray boxes show the number of tags which whilst the majority 
of tags suggested one phenotype, the evidence was not clear (there was evidence for 

more than one of the possible putative functions). The dotted line shows the 
number of tags which were matched using the random sample. 

 
As can be seen in Figures 10 and 11, at the predicted cut 

off of 6 or more tags the number of random samples 
containing a predisposition towards one of the possible 
phenotypes is low.  By using such a procedure it is possible 
to assign expression indicated functionality to approximately 
1600 (using SDD) and 1300 (using Euclidian distance) of the 
SAGE tags which have ambiguities. By taking the union of 
the two sets of results for all tags that are matched in 6 or 
more sample the proportion of tags for which a phenotype 
can be identified rises to 1900 tags.  

Eucledian Distance Prediction
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Figure 11: With a cut off of 6 the Euclidian distance clustering technique 

can resolve 1,300 tag ambiguities. Details as per Figure 10. 
 

Whilst the results are strong indicators as to function, 
examination of the results highlights a number of drawbacks 
to the technique: 
Differentiation of tags with similar annotations: 
Functional enrichment of the clusters will not be able to 
distinguish between putative phenotypes where there are 
only minor differences in the ontology terms used to 
describe each of the possibilities. Even though the proteins 
may have different functionality there may still be strong 
overlap in their ontology annotations, making the likelihood 
of differentiating between them small. Conversely if one of 
the products does not have any ontology terms (for example 
if it is a ‘hypothetical’ protein) then this possibility will never 
be assigned to a functional predisposition score. For 
example, the GGTGTGAGCC tag has three reliable Unigene 
mappings: a hypothetical protein, a transcription factor, or a 
histone deacetylase. The hypothetical protein has no 
matching ontology terms, and so it is not possible to match 
this to any functionally enriched cluster. The M1 
transcription factor and histone deacetylase share a number 
of ontology terms as they are both associated with DNA 
transcription (being an RNA polymerase activator, and the 
other altering chromosome structure by deacetylation of the 
histones).  In most cases this tag appears in clusters which 
contain enrichment of genes involved in the ‘nucleus’. 
However, as this cannot be used to distinguish these two 
possibilities it is ignored. Other facets of the cluster have to 
be used to attempt to identify if the tags expression profile 
suggests one of the possible protein functionalities. In this 
case the other facets for the clusters in which the tag appears 
(involved in cell cycle regulation, has hydrolase activity, 
involved in chromation modification etc.) are indicative of 



the histone deacetylase phenotype. However, these 
alternative facets are of higher probability than those 
discarded, and so are inherently less accurate in describing 
the functional enrichment characteristics of the cluster. 
Accuracy of the annotations: There are a number of 
mechanisms for associating ontology terms with annotations. 
GO provides evidence codes which indicate the source and 
mechanism through which the annotation was derived. The 
use of automatic annotations will lead to inconsistencies 
within the definitions for the tags, which will result in 
inaccurate definition of the clusters. For example, the tag 
CTGGAAATAA has two reliable mappings: a 
mitochondrial flavoprotein, or Plasminogen. In the majority 
of cases the tag can be shown to have an expression profile 
similar to other genes identified as having chymotrypsin 
activity (like Plasminogen). However, this tag is also matched 
to ‘DNA-binding’. This is caused by the Unigene entry for 
this gene having been automatically annotated with DNA 
binding/regulation of transcription terms (inferred from 
electronic annotation: IEA). Whilst Plasminogen itself does 
not directly exhibit this functionality it has still been found in 
groups which have been marked with the ‘DNA-binding’ 
term (presumably because either they have been marked up 
using similar automatic methods, the group has other types 
of enrichment with lower scores or due to chance). This 
suggests that a mechanism for filtering or scoring based on 
annotation type will increase prediction accuracy. 
Ontology terms not reflecting behaviour: The annotations 
not only reflect the functionality of the tag, but in some cases 
also reflecting important biological phenomena associated 
with its genetic product which may not be seen in the 
majority of experiments. For example, the tag 
TCAAAAAAAG has two reliable mappings: an actin 
filament capping protein or an RNA splicing enzyme. The 
evidence strongly supports the RNA splicing variant, as the 
majority of clusters in which this tag is found exhibit a strong 
enrichment in nucleotide acid binding. However, one of the 
clusters in which this tag resides has the ‘apoptosis’ 
enrichment as the best match for the possible phenotypes. 
The apoptosis term has been automatically matched with this 
gene because when it is over expressed it causes apoptosis 
(due to its disease associations), this does not define the 
proteins normal behaviour. Whilst this annotation is not a 
mistake, it is not one that can generally be used to correctly 
identify the tags phenotype. Whilst such annotations are rare, 
they will lead to incorrect identification of the tags general 
functionality. 

Discussion 
This paper outlines a technique for assigning putative 

phenotypes to SAGE tags by exploring co-expression of tags 
through analysis of their predisposition to re-occur in clusters 
which exhibit levels of functional enrichment. It would be 
naïve to believe that such a methodology could capture the 
complex semantic of cellular interactions required to divine 
protein function solely from an expression profile (with the 
degree of certainty required for scientific analysis). The 
methodology proposed will only be able to identify tags 
whose expression is regulated in a similar manner to other 

tags which have the same (ontology defined) functionality. 
However, as has been shown the technique can be used 
effectively with homology information to resolve ambiguities 
in certain SAGE tag assignments. The presence of these 
ambiguities is a major limitation of the SAGE technique. 

The techniques used to select the clusters do so using 
different mechanisms: the decomposition (SDD) selects 
items relevant to a subspace within the n-dimensional matrix; 
whilst the distance measures compare complete vectors. It 
may be possible to improve the methodology by combining 
these techniques using a hybrid EM based solution which 
uses both a semi-discrete decomposition and a distance 
measure to select initial clusters and then refines the solution. 
Such a technique could be used to alter both the size and 
number of the clusters, so that they favour classification 
using functional enrichment. Additionally, the use of a 
different ontology (in particular a more disease specific 
ontology) will affect the results considerably. 

This initial work present here could be expanded to 
provide a means for detecting both incorrect functional 
assignment of tags and possible sequencing errors. Such error 
detection would involve the identification of tags whose 
ontology assignments are different from those of the clusters 
for which they exhibit a strong predisposition. The success of 
such error detection would depend on the type of facets 
which were being examined, as different ontology terms are 
better at defining the contents of clusters than others. To 
accurately describe clusters by using their constituent 
members’ GO terms relies strongly on: correct and inclusive 
gene annotations; suitable mappings from identifiers to 
specific GO terms; and the parts of the Gene Ontology 
graph accurately reflecting the relationships that occur in 
gene co-expression. Genes that exhibit unusual behaviour, 
which include those that reside within ‘bumps’, are more 
likely to have been assigned GO terms as these are likely to 
have been studied in greater detail. The use of automated 
annotations increases the level of annotation, but introduces 
a higher level of error into the system. The possibilities for 
weight based navigation, based on both relationship type and 
on how GO relationships are reflected in cell expression 
levels (for example, categorised by tissue type), has not been 
explored. Such navigation would enable better usage of the 
high level of knowledge that is found in GO. 

The majority of tags that do show a predisposition to 
appear in clusters with specific facets do so without actually 
being annotated with the specific ontology term. Tags which 
are co-expressed and collectively have a specific molecular 
function or are involved in a specific biological process are 
often additionally co-expressed with a number of other tags 
which exhibit a different functionality. This is due to the 
facets which are used to describe the cluster not having the 
semantic richness to describe the actual cellular mechanism 
that the co-expressed cluster exhibits. The collection of 
facets is only able to give an indication as to the cellular 
machinery which resulted in the group having a statistically 
identifiable expression profile. This leads to the possibility of 
using the facets as a means to generate a more ‘expression 
orientated’ ontology. 



All the analyses discussed in this paper were run on a 
1.9GHz (with 1GB RAM) desktop computer. The SDD 
technique was considerably faster than the distance 
searching, as the generation of the factors is a sequential 
(rather than cycle based) technique. 

Further experimental details and results can be found at: 
http://www.seqexpress.com/bioinformatics_may 
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